

PRODUCT SPECIFICATION

128*64 Characters COG LCD MODULE MODEL: LT-12864A-601 Ver:1.0

< \diamond > Finally Specification

CUSTOMER'S APPROVAL									
CUSTOMER :									
SIGNATURE: DATE:									

APPROVED	PM	PD	PREPARED
BY	REVIEWD	REVIEWD	Ву

Prepared By: LEADER TIME SRL VIA MONS. PROSDOCIMI, 27 36042 BREGANZE (VI)

• This specification is subject to change without notice. Please contact LT or it's representative before designing your product based on this specification.

Issued Date:2011.05.07 **Doc. No.:**

Revision Status

Version	Revise Date	Page	Content	Modified By
Ver. 1.0	2011.05.07		First Issued	

Table of Contents

No.	Contents Pa	ge
1. FEA	ATURES	4
2. MEC	CHANICAL SPECIFICATIONS	4
3. ELE	CTRICAL SPECIFICATIONS	5
4. TER	MINAL FUNCTIONS AND BLOCK DIAGRAM	6
5. TIMI	NG CHARACTERISTICS	8
6. INS	TRUCTION SET	9
7. QUA	ALITY SPECIFICATIONS	10
8. REL	IABILITY	15
9. HAN	IDLING PRECAUTION	16
10. OU	TLINE DIMENSION	17

1. FEATURES

The features of LCD are as follows

- * Display mode : FSTN /Transflective/positive
- * Drive IC
- : ST7565R
- * Interface Input Data : SPI-4
- * Driving Method : 1/65Duty, 1/9 Bias
- * Viewing Direction : 6 O'clock
- * Backlight
- : LED/White
- *Sample NO.
- : EG1206J7FSW6G-A0_01/20110506

2. MECHANICAL SPECIFICATIONS

Item	Specification	Unit
Module Size	77.4(W) x 52.4(H) x 6.5(D)	mm
Number of Dots	128x64 Dots	
View display area	70(W) x 40(H)	mm
Activity Display Area	66.52(W) x 33.24 (H)	mm
Dot Size	0.48(W) x 0.48(H)	mm
Dot Pitch	0.52(W) x 0.52(H)	

3. ELECTRICAL SPECIFICATIONS

3-1. ABSOLUTR MAZIMUM RATINGS (Ta=25 °C)

		Star			
ltem	Symbol	Min.	Тур.	Max.	Unit
Supply Voltage For Logic	Vdd	-0.3		3.6	V
Supply Voltage For LCD Drive	V _{LCD}	-0.3	-	13.5	V
Operating Temp.	Тор	-20	-	+70	°C
Storage Temp.	Tst	-30	-	+80	°C

*. NOTE: The response time will be extremely slow when the operating temperature is around -10°C, and the back ground will become darker at high temperature operating.

3-2. ELECTRICAL CHARACTERISTICS

ltem		Symbol	Test Condition	Min.	Тур.	Max.	Unit
Logic supply	Voltage	Vdd		2.7	3.0	3.3	V
LCD Driv	LCD Drive		Ta=25 °C	8.8	9.1	9.4	V
	"H" Level	V _{IH}	VDD=3.0V ± 10%	0.8Vdd		Vdd	V
Input Voltage	"L" Level	V _{IL}		Vss		0.2Vdd	V
Current Const	Current Consumption			-	0.75	-	mA

3-3. BACKLIGHT

3-3-1. Absolute Maximum Ratings

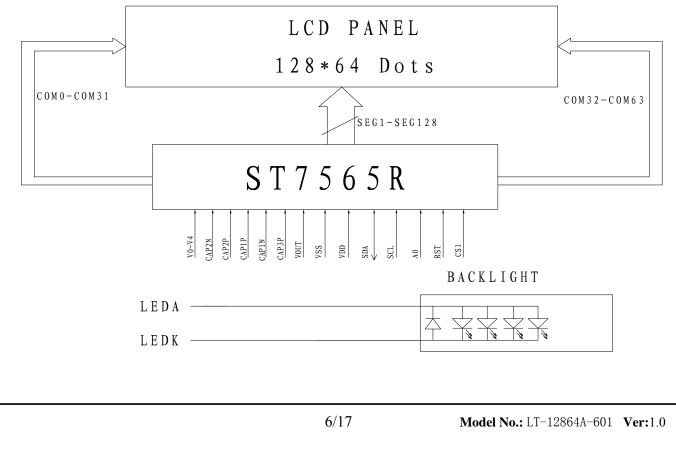
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Forward Current	IF		-	75	100	mA
Reverse Voltage	VR	Ta=25 °C	-	-	5	V
Power Dissipation	PD		-	-	400	mW

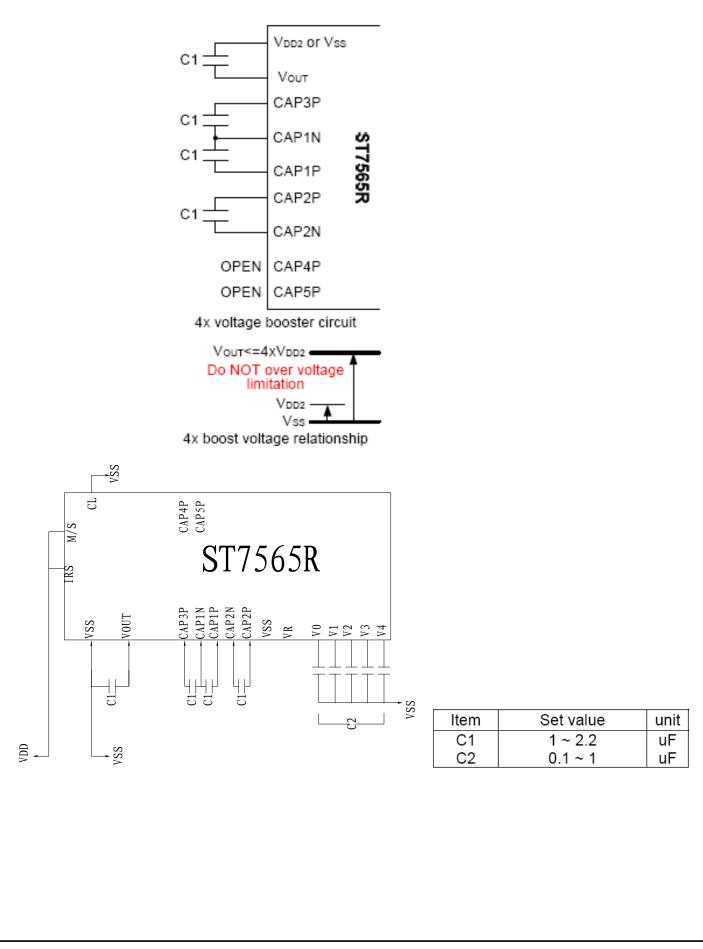
3-3-2. Electrical-optical Characteristics (Ta=25°C)

ltem	Symbol	Condition	Mi	in.	Ту	/p.	Ma	ax.	Unit
Forward Voltage	VF		2	.9	3	.1	3	.3	V
Average Luminous Intensity (measured without LCD panel)	lv Ir=75mA Ta=25°C		140		200		-		cd/m2
Color coordinates			X 0.24	Y 0.24	X 0.27	Y 0.27	X 0.30	Y 0.30	

The brightness is measured without LCD panel

For operation above 25 °C, The Ifm & Pd must be derated , the current derating is -0.36mA/ °C for DC drive and -0.86mA/ °C for Pulse drive ,the Power dissipation is -0.75mW/ °C. The product working current must not more than the 60% of the Ifm or Ifp according to the working temperature.


Issued Date:2011.05.07 **Doc. No.:**


4. TERMINAL FUNCTIONS AND BLOCK DIAGRAM

4-1. INTERFACE PIN FUNCTION DESCRIPTION

Pin No.	Pin Name	Function						
1	CS1	Chip selection signal						
2	RST	Reset signal						
3	A0	Select register signal						
4	SCL	Serial clock input						
5	SDA	Serial data input						
6	VDD	Power supply						
7	VSS	Ground						
8	VOUT	Supply voltage converter input						
9	CAP3P							
10	CAP1N							
11	CAP1P	Voltage booster circuit capacitor connection PIN						
12	CAP2P							
13	CAP2N							
14-18	V4-V0	Supply voltage for LCD driving						

4-2. BLOCK DIAGRAM

Issued Date:2011.05.07 **Doc. No.:**

5. TIMING CHARACTERISTICS The Serial Interface tCSH CS1 (CS2="1") tsan: tsa A0 tseve tslw SCL tshw tr tr tSDS tSDH SI Rating ltem Signal Symbol Condition Units Min. Max. Serial Clock Period Tscyc 100 _ SCL "H" pulse width SCL 50 TSHW _ SCL "L" pulse width 50 Tslw ____ Address setup time Tsas 30 _ A0 20 Address hold time TSAH ns Data setup time Tsds 30 _ SI Data hold time TSDH 20 _ CS-SCL time 30 Tcss CS Тсзн CS-SCL time 60 _ Reset Timing tRW RES tR Internal During reset Reset complete status 1 Rating ltem Signal Symbol Condition Units Min. Max. Тур. Reset time tR 2.0 us _ Reset "L" pulse width 2.0 /RES trw _ _ us

6. INSTRUCTION SET

Command				Cor	nma	nd (Code	è				- Function
Command	A0	/RD	/WR	D7	D6	D5	D4	D3	D2	D1	D0	Function
(1) Display ON/OFF	0	1	0	1	0	1	0	1	1	1	0 1	LCD display ON/OFF 0: OFF, 1: ON
(2) Display start line set	0	1	0	0	1	D	ispla	iy sta	art a	ddre	ess	Sets the display RAM display sta line address
(3) Page address set	0	1	0	1	0	1	1	Pa	ge a	ddr	ess	Sets the display RAM page address
(4) Column address set upper bit Column address set lower bit	0 0	1 1	0 0	0 0	0 0	0 0	1 0	colu Lea	umn ist si	add ignif	cant Iress ïcant Iress	Sets the most significant 4 bits of the display RAM column address Sets the least significant 4 bits of the display RAM column address
(5) Status read	0	0	1		St	atus		0	0	0	0	Reads the status data
(6) Display data write	1	1	0				Writ	e da	ta			Writes to the display RAM
(7) Display data read	1	0	1				Rea	d da	ta			Reads from the display RAM
(8) ADC select	0	1	0	1	0	1	0	0	0	0	0 1	Sets the display RAM address SEG output correspondence 0: normal, 1: reverse
(9) Display normal/ reverse	0	1	0	1	0	1	0	0	1	1	0 1	Sets the LCD display normal/ reverse 0: normal, 1: reverse
(10) Display all points ON/OFF	0	1	0	1	0	1	0	0	1	0	0 1	Display all points 0: normal display 1: all points ON
(11) LCD bias set	0	1	0	1	0	1	0	0	0	1	0 1	Sets the LCD drive voltage bias ratio 0: 1/9 bias, 1: 1/7 bias (ST7565F
(12) Read/modify/write	0	1	0	1	1	1	0	0	0	0	0	Column address increment At write: +1 At read: 0
(13) End	0	1	0	1	1	1	0	1	1	1	0	Clear read/modify/write
(14) Reset	0	1	0	1	1	1	0	0	0	1	0	Internal reset
(15) Common output mode select	0	1	0	1	1	0	0	0 1	*	*	*	Select COM output scan direction 0: normal direction 1: reverse direction
(16) Power control set	0	1	0	0	0	1	0	1		oera ode	ting	Select internal power supply operating mode
(17) Vo voltage regulator internal resistor ratio set	0	1	0	0	0	1	0	0		esist atio	or	Select internal resistor ratio(Rb/Ra) mode
(18) Electronic volume mode set Electronic volume register set	0	1	0	1 0	0 0	0 Ele	0 ctro	0 nic v	0 olur		1 alue	Set the V0 output voltage electronic volume register
(19) Static indicator ON/OFF Static indicator	0	1	0	1 0	0 0	1 0	0 0	1 0	1 0	0	0 1 Mode	0: OFF, 1: ON Set the flashing mode
register set (20) Booster ratio set	0	1	0	1 0	1 0	1 0	1 0	1 0	0	0 ste	0 p-up alue	select booster ratio 00: 2x,3x,4x 01: 5x 11: 6x
(21) Power saver												Display OFF and display all points ON compound command
(22) NOP	0	1	0	1	1	1	0	0	0	1	1	Command for non-operation
(23) Test	0	1	0	1	1	1	1	*	*	*	*	Command for IC test. Do not use this command

7. QUALITY SPECIFICATIONS 7-1. LCM Appearance and Electric inspection Condition 1. Inspection will be done by placing LCM 30cm away from inspector's eyeballs under normal illumination. 45 Upper Polarizer Metal (Platic) Frame LCD Glass Conductive Rubber Bottom Polarizer PCB Backlight Foot (Frame) Coating Epoxy 2. View Angle: with in 45° around perpendicular line. 7-2. Definition 1. COB 0 0 -PCB Metal (Plastic) Frame [0 LCD 0 0 \bigcirc 2. Heat Seal LCD Heat Seal 3. TAB and COG LCD Glass LCD Glass IC ITO Terminal Pin Pad IC 0 COG TAB 10/17Model No.: LT-12864A-601 Ver:1.0

7-3. Sampling Plan and Acceptance

- Sampling Plan MIL STD 105E (\parallel) ordinary single inspection is used.
- Acceptance Major defect: AQL = 0.65% Minor defect: AQL = 1.5%

7-4. Criteria

1.000				
Defect	Inspection Item	Inspection Standards		
Major	PCB copper flakes peeling off	Any copper flake in viewing Area should be greater than 1.0mm ²	Reject	
Major	Height of coating epoxy	Exceed the dimension of drawing	Reject	
Major	Void or hole of coating epoxy	Expose bonding wire or IC	Reject	
Major	PCB cutting defect	Exceed the dimension of drawing	Reject	

<u>2. SMT</u>

Defect	Inspection Item	Inspection Standa	ards
Minor	Component marking not readable		Reject
Minor	Component height	Exceed the dimension Of drawing	Reject
Major	Component solder defect (missing, extra, wrong component or wrong orientation		Reject
Minor	Component position shift x component soldering pad x \rightarrow	X < 3/4Z Y > 1/3D	Reject
Minor	Component tilt component D Soldering pad	Y > 1/3D	Reject
Minor	Insufficient solder component PAD PCB	<i>θ</i> ≤ 20°	Reject

3. Metal (Plastic) Frame

Defect	Inspection Item	Inspection Standards					
Major	Crack / breakage	Any	Anywhere				
		W	L	Acceptable of Scratch			
		w<0.1mm	Any	Ignore			
		0.1 <u><</u> w<0.2mm	L <u><</u> 5.0mm	2			
Minor	Frame Scratch	0.2 <u><</u> w<0.3mm	L <u><</u> 3.0mm	1			
		w <u>></u> 0.3mm	Any e criteria applicable	0			
			reater than 5mm. on the back sid ignored.	1			
				Acceptable of Dents / Pricks			
		⊕ <u><</u> 1.0mm		2			
	Frame Dent, Prick	1.0<4	⊃ <u><</u> 1.5mm	1			
Minor	$\Phi = \frac{L + W}{2}$	1.5mm<⊕		0			
	2	Note : 1. Above criteria applicable to any two der / pricks with distance greater than 5mm 2. Dent / prick on the back side of frame (n visible) can be ignored					
Minor	Frame Deformation	Excee	d the dimension of	drawing			
		Any rust					

4. Flexible Film Connector (FFC)

Defect	Inspection Item	Inspection Standards			
Minor	Tilted soldering	Within the angle +5°	Acceptable		
Minor	Uneven solder joint /bump		Reject		
		Expose the conductive line	Reject		
Minor	Hole $\Phi = \frac{L + W}{2}$	Φ > 1.0mm	Reject		
Y-¥-	Y D	Y > 1/3D	Reject		
		X > 1/2Z	Reject		

5. Screw

Defect	Inspection Item	Inspection Standards	
Major	Screw missing/loosen		Reject
Minor	Screw oxidation	Any rust	Reject
Minor	Screw deformation	Difficult to accept screw driver	Reject

6. Heatseal 、TCP 、FPC

Defect	Inspection Item	Inspection Standards	
Major	Scratch expose conductive layer		Reject
Minor	HS Hole $\Phi = \frac{L + W}{2}$	Φ > 0.5mm	Reject
Major	Adhesion strength	Less than the specification	Reject
Minor	Position shift $Y \xrightarrow{-\frac{1}{2}} \xrightarrow{-\frac{1}{2}$	Y > 1/3D	Reject
WIITIO		X > 1/2Z	Reject
Major	Conductive line break		Reject

7. LED ${\scriptstyle \smallsetminus}\,$ Backing Protective Film and Others

Defect	Inspection Item	Inspection Standards			
		Acceptable number of units			
		⊕ <u><</u> 0.10mm	ignore		
		0.10<⊕ <u><</u> 0.15mm	2		
Minor		0.15<⊕ <u><</u> 0.2mm	1		
		⊕>0.2mm	0		
		The distance between any two spots should be \geq Any spot/dot/void outside of viewing area is acce			
Minor	Protective film tilt	t Not fully cover LCD			
Major	COG coating	Not fully cover ITO circuit	Reject		

8. Electric Inspection

Defect	Inspection Item	Inspection Standards	
Major	Short		Reject
Major	Open		Reject

9. Inspection Specification of LCD

Defect	Insp	ect Item	Inspection Standards							
		* Glass Scratch	W			0.03			5 V	V>0.05
Minor		* Polarizer Scratch	L	L<5		_	L<3		Any	
	Linear Defect	* Fiber and Linear	ACC. NO.	1			1 F		Reject	
		material			L is the length and W is the width of the					
		* Foreign material			<u><</u> 0.1 0.1<⊅ <u><</u> 0.1		0.15 ().15<⊕ <u><</u> 0	.2	Ф> 0.2
	Black Spot	between glass and polarizer or glass	NO.	3EA 100m		2		1		0
Minor		and glass * Polarizer hole or protuberance by external force	Note	Φ is the average diameter of the defer				-		
		* Unobvious			Φ <u><</u>	0.3	0.3<	<Ф <u><</u> 0.5	0.	5 <Φ
	White Spot	transparent foreign material between	ACC. NO.	3EA	/ 10	00mm ²		1		0
Minor	and Bubble in polarizer	glass and glass or glass and polarizer * Air protuberance between polarizer and glass		Φ is the average diameter of the defect. Distance between two defects > 10mm.			-			
	Segment Defect		Φ	Φ <u><</u> 0.	10	0.10<⊕ <u><</u> 0.20		0.20<⊕ <u><</u> 0.25		Φ>0.2
			ACC. NO.	3EA 100m	./ m²	2		1		0
Minor				W is more than 1/2 segment width Reject						
			Note	$\Phi = \frac{L + W}{2}$ Distance between two defect is 10mm						
			Φ	Φ <u><</u> 0.	10	0.10 <⊕	<u><</u> 0.20	0.20 0.20<Ф <u><</u> 0.25		Φ>0.2
	Protuberant		w	Glu	е	W <u><</u> 1/2 Seg W<0.2		W <u><</u> 1/2 Seg W<0.2		Ignor
Minor	Segment	Φ = (L + W) / 2	ACC. NO.	3EA 100m	m²	2		1		0
			1. Seg	jment						
			E	B B <u><</u>		<u><</u> 0.4mm 0.4		0.4 <b<u><1.0mm B>1</b<u>		.0mm
	Assembly		B-	B-A B-		-A<1/2B		A<0.2	B-A	<0.25
Minor	Mis-alignment			Judge Acceptable Acceptable Accept			eptable			
			2. Dot	Matrix	<u> </u>					
			Deformation>2° Rej				Rejec			
Minor	Stain on LCD Panel Surface	Accept when stains can be wiped lightly with a sof cloth or a similar one. Otherwise, judged according to the above items: "Black spot" and "White Spot"								

8. RELIABILITY

NO.	Item	Condition	Criterion
1	High Temperature Operating	70℃, 96Hrs	
2	Low Temperature Operating	-20℃, 96Hrs	
3	High Humidity	50℃, 90%RH, 96Hrs	
4	High Temperature Storage	80℃, 96Hrs	
5	Low Temperature Storage	-30℃, 96Hrs	No defect in cosmetic and
		Random wave	operational function allowable.
6	Vibration	10 ~ 100Hz	Total current Consumption should be below double of
0		Acceleration: 2g	initial value.
		2 Hrs per direction(X,Y,Z)	
		-20℃ to 25℃ to 70℃	
7	Thermal Shock	(60Min) (5Min) (60Min)	
		16Cycles	
		Contract Discharge Voltage:	There will be discharged to:
8		+1 ~ 5kV and -1 ~ -5kV	There will be discharged ten times at every discharging
		Air Discharge Voltage: +1 ~ 8kV and –1 ~ -8kV	voltage cycle. The voltage gap is 1kV.

Note: 1) Above conditions are suitable for our company standard products. 2) For restrict products, the test conditions listed as above must be revised.

9. HANDLING PRECAUTION

(1) Mounting Method

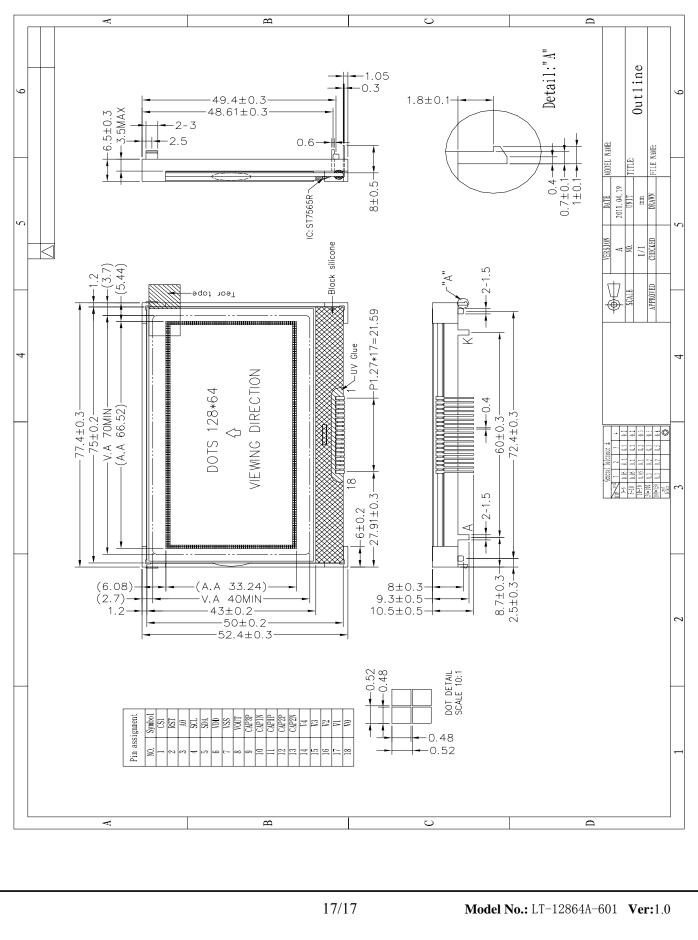
The panel of the LCD Module consists of two thin glass plates with polarizes, which easily get damaged. Since the Module is fixed by utilizing fitting holes in the printed circuit board. Extreme care should be taken when handling the LCD Modules.

(2) Caution of LCD handling & cleaning

When cleaning the display surface, use soft cloth with solvent (recommended below) and wipe lightly.

- Isopropyl alcohol
- Ethyl alcohol
- Tricolors triflers' thane

Do not wipe the display surface with dry or hard materials that will damage the polarizer surface. Do not use the following solvent:


- Water- Kenton- Aromatics
- (3) Caution against static charge
 - The LCD Module use C-MOS LSI drivers, so we recommend that you connect any unused input terminal to VDD or VSS, do not input any signals before power is turned on. And ground your body, Work/assembly table. And assembly equipment to protect against static electricity.
- (4) Packaging
 - Modules use LCD elements, and must be treated as such. Avoid intense shock and falls from a height.
 - To prevent modules from degradation. Do not operate or store them exposed directly to sunshine or high temperature/humidity.
- (5) Caution for operation
 - It is indispensable to drive LCD's within the specified voltage limit since the higher voltage than the limit shortens LCD life. An electrochemical reaction due to direct current causes LCD deterioration, Avoid the use of direct current drive.
 - Response time will be extremely delayed at lower temperature than the operating temperature range and on the other hand at higher temperature LCD's show dark color in them. However those phenomena do not mean malfunction or out of order with LCD's, which will come back in the specified operating temperature range.
 - If the display area is pushed hard during operation, some font will be abnormally displayed but it resumes normal condition after turning off once.
 - A slight dew depositing on terminals is a cause for electro-chemical reaction resulting in terminal open circuit.

Usage under the relative condition of 40°C, 50%RH or less is required.

(6) Storage

- In the case of storing for a long period of time (for instance.) For years) for the purpose or replacement use, the following ways are recommended.
 - Storage in a polyethylene bag with sealed so as not to enter fresh air outside in it, And with no desiccant.
- Placing in a dark place where neither exposure to direct sunlight nor light is. Keeping temperature in the specified storage temperature range.
- Storing with no touch on polarizer surface by the anything else. (It is recommended to store them as they have been contained in the inner container at the time of delivery)
- (7) Safety
 - It is recommendable to crash damaged or unnecessary LCD into pieces and wash off liquid crystal by using solvents such as acetone and ethanol. Which should be burned up later.
 - When any liquid crystal leaked out of a damaged glass cell comes in contact with your hands, please wash it off well with soap and water.

10. OUTLINE DIMENSION

